Обзор планировщиков для SLURM

Jobs which have been queued for more than 15 days will be considered starving and heroic measures will be taken to attempt to run them

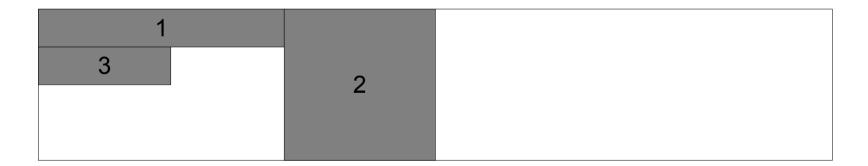
Swiss National Computer Centre

Берсенёв Александр, МГКН1

mail: bay@hackerdom.ru

icq: 1862222

План

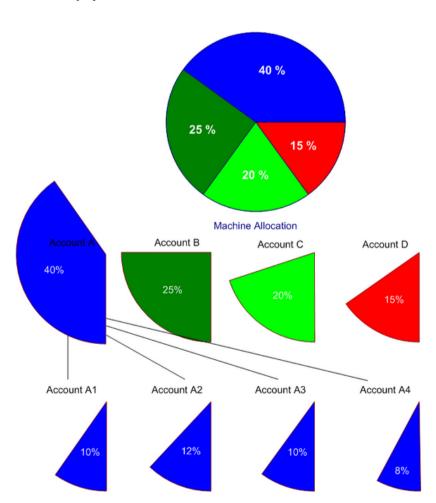

- Backfill
- Maui

• Вопросы

Backfill

• Принципы

- ставим задачи в очередь в порядке приоритета
- если имеется менее приоритетная задача и свободные ресурсы, то ставим эту задачу раньше


Приоритеты

- Факторы, влияющие на приоритет
 - время, проведённое задачей в очереди
 - Fair-share: разница между обещанной долей ресурсов и потребленной долей ресурсов
 - размер задачи
 - коэффициент очереди
 - QOS

```
Job_priority =
     (PriorityWeightAge) * (age_factor) +
      (PriorityWeightFairshare) * (fair-share_factor) +
      (PriorityWeightJobSize) * (job_size_factor) +
      (PriorityWeightPartition) * (partition_factor) +
      (PriorityWeightQOS) * (QOS_factor)
```

Fair share

- Учитывается <число процессоров>*<число секунд>
- Планируют добавить <количество используемой памяти>

- «Период полураспада»
- F = 2**(-U/S)

	А	В	С	D	Е	F		G	Н		J	K
1	Current FairShar	airShare formula										
2				normalize	d shares							
3			0.01	0.10	0.25	0.50		1.00				
4			small	medium1	medium2	large		0.90				
5		0.00	0.51	0.55	0.63	0.75		0.80				
6		0.01	0.50	0.55	0.62	0.75	ne	0.70		1411		
7	effective usage	0.10	0.46	0.50	0.58	0.70		0.60				smal
8		0.25	0.38	0.43	0.50	0.63	are	0.50				medium1 —
10		0.50	0.26	0.30	0.38	0.50	fairshare	0.40 0.30 0.20 0.10 0.00	0 0.01 0.1 effect	0.25 0.5 etive usage	medium2	medium2
11	Linear Relative F	airShare with Pr	iorityMinES =		2							
12	Lilleal Relative	anonaic with Fi	7	normalize								
13			0.01	0.10	0.25	0.50		1.00				
14			small	medium1	medium2	large		0.90			_	
15		0.00	1.00		1.00			0.80				
16		0.01	0.50	0.95	0.98	0.99		0.70				
17	effective usage	0.10	0.00	0.50	0.80	0.90		0.60				_
18		0.25	0.00	0.00	0.50	0.75	. e	0.50				smal — medium1 —
19	1	0.50	0.00	0.00	0.00	0.50						medium2
20							fair	0.40 0.30 0.20 0.10 0.00	0 0.01 0.1 effect	0.25 0.5 dive usage	medium2 small	■ large
21	Exponential Rela	tive FairShare								_		
22				normalize	d shares			4.00				
23			0.01	0.10	0.25	0.50		1.00				
24			small	medium1	medium2	large		0.90				
25		0.00	1.00	1.00	1.00	1.00		0.80				_
26		0.01	0.37	0.90	0.96	0.98	ne	0.70				
27	effective usage	0.10	0.00	0.37	0.67	0.82	va	0.60				small -
28		0.25	0.00	0.08	0.37	0.61	are	0.50				medium1
30		0.50	0.00	0.01	0.14	0.37	fairshare value	0.40 0.30 0.20 0.10 0.00		0.25 0.5 ctive usage	medium2	medium2
										_		

1

Fair share

Slurm 7

sprio

• Для объяснения пользователям почему задача имеет такой приоритет используется утилита sprio:

[u1333@um	n64 ~]\$ sprio					
JOBID	PRIORITY	AGE	FAIRSHARE	JOBSIZE	PARTITION	QOS
479	219	0	90	29	100	0
480	219	0	90	29	100	0
481	219	0	90	29	100	0
482	129	0	0	29	100	0
483	129	0	0	29	100	0
[u1333@um64 ~]\$ sprio -w						
JOBID	PRIORITY	AGE	FAIRSHARE	JOBSIZE	PARTITION	QOS
Weights		100	100	100	100	100

Slurm

Gang sheduling

- Идея: останавливать менее приоритетную задачу чтобы запустить более приоритетную.
- Способы остановки:
 - CANCEL
 - CHECKPOINT
 - REQUEUE
 - SUSPEND
- Проблема памяти
 - Есть возможность задавать максимальное число памяти на 1 CPU

Резервирование ресурсов

- scontrol create reservation starttime=2009-02-06T16:00:00 \ duration=120 user=root flags=maint,ignore_jobs nodes=ALL
- scontrol create reservation user=alan,brenda \
 starttime=noon duration=60 flags=daily nodecnt=10
- !!! Чтобы запустится на зарезервированном ресурсе, пользователь должен указать это явно:

sbatch --reservation=alan_6 -N4 my.script

- Разработка началась в середине 90-х
- Cluster Resources, основной разработчик Maui, переключилась на разработку Moab, комерческого планировщика в 2005
- Поддерживает несколько менеджеров ресурсов, включая SLURM
- Общается с менеджером ресурсов по протоколу wiki
- Maui does not trust resource manager. All node and job information is reloaded on each iteration(с оф. сайта).
- Предоставляет свой набор утилит для управления очередью
 - использование утилит SLURM так же возможно
- Использует одну очередь

- Факторы, влияющие на приоритет:
 - Приоритет пользователя/группы/аккаунта/QOS/класса
 - Потребление ресурсов пользователем/группой/аккаунтом/qos/классом
 - Запрошенное число процессоров/узлов/памяти/swap/диска/времени счета/...
- Время, проведённое задачей в очереди. Количество раз когда backfill откладывал старт задачи из-за менее приоритетных
 - Число секунд прошедшее с момента старта(только для запущенных)
 - Примерное время, которая задача должна находится в очереди

- Политики доступа к узлу
 - Одна задача на узел
 - Сколько угодно задач на узел
 - Все задачи на узле одного пользователя
 - Все задачи на узле одной группы
- Политики доступности узла
 - Узел занят если все его ресурсы заказаны
 - Узел занят если все его ресурсы фактически потребленны
 - Смешанная политика

- Политики доступа к узлу
 - Одна задача на узел
 - Сколько угодно задач на узел
 - Все задачи на узле одного пользователя
 - Все задачи на узле одной группы
- Политики доступности узла
 - Узел занят если все его ресурсы заказаны
 - Узел занят если все его ресурсы фактически потребленны
 - Смешанная политика

Резервации

• Отличия от SLURM

- Пользователю не обязательно явно указывать --reservation
- Ограничение максимального времени, которое задача может быть в резервации
- Резервация может быть создана пользователем

```
SRCFG[day2] STARTTIME=8:00:00 ENDTIME=19:00:00
```

SRCFG[day2] PERIOD=DAY DAYS=MON, TUE, WED, THU, FRI

SRCFG[day2] TIMELIMIT=1:00:00

SRCFG[day2] RESOURCES=PROCS:4 TASKCOUNT=10

SRCFG[day2] FLAGS=SPACEFLEX,PREEMPTEE,BESTEFFORT

Preemption

• Очень похоже на Gang sheduling в SLURM

PREEMPTPOLICY REQUEUE

QOSCFG[high] QFLAGS=PREEMPTOR

QOSCFG[med]

QOSCFG[low] QFLAGS=PREEMPTEE

Backfill vs Maui

Backfill	Maui				
Активно развивается	В основном исправляются баги				
Базовые настройки	Множество настроек				
Интегрирован в SLURM	Не доверяет SLURM'y				
Использует плагины для	Своя система выделения узлов				
выделения узлов и подсчета	и подсчета приоритета				
приоритета					
Используются утилиты SLURM	Используется свой комплект				
	утилит, ведется своя статистика,				
	можно использовать утилиты				
	SLURM				

Вопросы?